ISB News

Baliga Lab: A Global Map To Fight Tuberculosis

3 Bullets:

  • The disease progression of tuberculosis is extremely complex and it’s poorly understood.
  • ISB and Seattle BioMed researchers have made an important step by developing a comprehensive map of gene regulation in tuberculosis.
  • A resulting open-access web portal offers any scientist the ability to mine the collected data.

By ISBUSA

Tuberculosis (TB) remains a top global health threat due to its remarkable complexity in disease progression. To help understand these complexities, researchers from Institute for Systems Biology and Seattle BioMed have developed the most comprehensive map to date of gene regulation in Mycobacterium tuberculosis (MTB). It’s the first systems-scale construction of transcription factor (TF) binding sites and their regulatory target proteins in MTB. This study was published on March 31, 2015, in Nature Scientific Data.

Title: A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis
Journal: Nature Scientific Data
Authors: Serdar Turkarslan, Eliza J. R. Peterson, Tige R. Rustad, Kyle J. Minch, David J. Reiss, Robert Morrison, Shuyi Ma, Nathan D. Price, David R. Sherman & Nitin S. Baliga
Link: Nature Scientific Data
Related research:
>Pushing the molecular switches of tuberculosis into overdrive to map interactions
>Uncovering the genetic adaptability of tuberculosis

The study involved systematic mapping of TF binding sites for more than 80 percent of all TFs in MTB genome, as well as classifying more than 9,000 changes associated with these TFs. The team also performed a comparative analysis of the two large datasets that were mapped and linked an additional 1,500 binding events to proximal gene regulation. In addition, the researchers integrated these datasets with independent regulatory network model to rigorously map networks of gene regulation in MTB.

The team developed the open-access MTB Network Portal to ensure integration of these datasets with existing data, analyses and other tools and eventual dissemination to the broader scientific community. Given the complexity of tuberculosis, this platform will provide a unified environment for integrated data mining for the larger MTB research community.

Related Articles

  • Nathan Price

    Dr. Nathan Price Named NAM Emerging Leader in Health and Medicine Scholar

    The National Academy of Medicine (NAM) announced ISB’s Dr. Nathan Price as a 2019 Emerging Leader in Health and Medicine Scholar. NAM’s Emerging Leaders in Health and Medicine Program provides a platform for a new generation of leaders to collaborate with the NAM and its members across generations and fields of expertise.

    Read More
  • Drs. Monica Orellana and Nitin Baliga

    New Study May Provide Knowledge for Increased Biofuel Production from Unicellular Algae

    With potential ramifications for increasing biofuel production from unicellular algae, ISB’s Drs. Mónica Orellana and Nitin Baliga, along with colleagues from the University of the Witwatersrand, used the chlorophyte algae Chlamydomonas reinhardtii to demonstrate the cell’s metabolic and physiological changes of lipid accumulation that occurs during nitrogen depletion.

    Read More
  • Path-seq illustration

    Profiling Pathogen Gene Expression from Infected Host Cells

    Researchers at ISB reported a novel method, Path-seq, to profile expression of all MTB genes within infected mice. This study presents the most comprehensive transcriptome profiling of MTB from in vivo infection and a major technical advancement for studying any host-pathogen interaction.

    Read More
Show More Articles