ISB News

Baliga Lab: A Global Map To Fight Tuberculosis

3 Bullets:

  • The disease progression of tuberculosis is extremely complex and it’s poorly understood.
  • ISB and Seattle BioMed researchers have made an important step by developing a comprehensive map of gene regulation in tuberculosis.
  • A resulting open-access web portal offers any scientist the ability to mine the collected data.

By ISBUSA

Tuberculosis (TB) remains a top global health threat due to its remarkable complexity in disease progression. To help understand these complexities, researchers from Institute for Systems Biology and Seattle BioMed have developed the most comprehensive map to date of gene regulation in Mycobacterium tuberculosis (MTB). It’s the first systems-scale construction of transcription factor (TF) binding sites and their regulatory target proteins in MTB. This study was published on March 31, 2015, in Nature Scientific Data.

Title: A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculosis
Journal: Nature Scientific Data
Authors: Serdar Turkarslan, Eliza J. R. Peterson, Tige R. Rustad, Kyle J. Minch, David J. Reiss, Robert Morrison, Shuyi Ma, Nathan D. Price, David R. Sherman & Nitin S. Baliga
Link: Nature Scientific Data
Related research:
>Pushing the molecular switches of tuberculosis into overdrive to map interactions
>Uncovering the genetic adaptability of tuberculosis

The study involved systematic mapping of TF binding sites for more than 80 percent of all TFs in MTB genome, as well as classifying more than 9,000 changes associated with these TFs. The team also performed a comparative analysis of the two large datasets that were mapped and linked an additional 1,500 binding events to proximal gene regulation. In addition, the researchers integrated these datasets with independent regulatory network model to rigorously map networks of gene regulation in MTB.

The team developed the open-access MTB Network Portal to ensure integration of these datasets with existing data, analyses and other tools and eventual dissemination to the broader scientific community. Given the complexity of tuberculosis, this platform will provide a unified environment for integrated data mining for the larger MTB research community.

Related Articles

  • Path-seq illustration

    Profiling Pathogen Gene Expression from Infected Host Cells

    Researchers at ISB reported a novel method, Path-seq, to profile expression of all MTB genes within infected mice. This study presents the most comprehensive transcriptome profiling of MTB from in vivo infection and a major technical advancement for studying any host-pathogen interaction.

    Read More
  • Biology students

    Biology Classes ‘Come Alive’ After Teacher’s Summer with ISB

    Kyle Kinzler, a high school biology teacher from Portland, Oregon, spent part of last summer at Institute for Systems Biology to evolve his curriculum and learn new ways to teach relevant, compelling and innovative content to his students. As a result, he says his classes has “come alive.”

    Read More
  • Spotlight on Amy Zamora, ISB Systems Research Scholar

    Amy Zamora joined ISB in August as a Systems Research Scholar. The Systems Research Scholars Program provides recent college undergraduates a springboard to become the next generation’s pioneers of interdisciplinary scientific research. In this Q&A, Zamora describes her experiences at ISB, research interests, future aspirations, and much more.

    Read More
Show More Articles