ISB News

Path-seq illustration

Profiling Pathogen Gene Expression from Infected Host Cells

Researchers at ISB reported a novel method, Path-seq, to profile expression of all MTB genes within infected mice. This study presents the most comprehensive transcriptome profiling of MTB from in vivo infection and a major technical advancement for studying any host-pathogen interaction.

Read More

ISB’s Dr. Eliza Peterson Earns TB Junior Investigator Award

Dr. Eliza Peterson, a senior research scientist who studies tuberculosis (TB) in the Institute for Systems Biology’s Baliga Lab, has been recognized by the University of Washington’s Tuberculosis Research and Training Center with a TB Junior Investigator Award.

Read More

NIH Research Matters Features ISB’s MTB Paper

NIH Research Matters published an article on our tuberculosis paper. “The incredibly large number of possible drug combinations taken together with the difficulty of growing Mtb in the laboratory make discovery of effective combination therapy extremely challenging,” Dr. Nitin Baliga says. “We hope that our systems-based strategy will accelerate TB drug discovery by helping researchers prioritize combinations that are more likely to be effective.” READ THE ARTICLE

Read More

Baliga Lab: New Publication in ‘Nature Microbiology’

The Baliga Lab and colleagues at Center for Infectious Disease Research published (online in advance of print) this landmark study today in the journal Nature Microbiology: Seattle researchers created a genetic blueprint of the cunning tuberculosis bacteria, then used it to predict and rank potential drug targets 3 Bullets: Researchers at the Institute for Systems Biology and Center for Infectious Disease Research have deciphered how the human pathogen Mycobacterium tuberculosis…

Read More

Baliga Lab: Uncovering the Genetic Adaptability of Tuberculosis

3 Bullets: The Institute for Systems Biology and Seattle BioMed have collaborated to reconstruct the gene regulatory network of the human pathogen Mycobacterium tuberculosis. Finely tuned gene regulation has allowed Mycobacterium tuberculosis to survive unnoticed in an apparently healthy host for decades; understanding those subtleties is critical for advancing treatment. The identification of co-regulated sets of genes and their regulatory influences offers validated predictions that will help guide future research…

Read More