ISB News

Dr. Jeff Ranish and Dr. Mark Gillespie

Mysteries of Cell Fate Unlocked with New Measurement and Modeling Techniques 

In the cellular process of differentiation, information about the concentrations of an important class of proteins residing in a cell’s nucleus has been lacking, a missing link needed for scientists to fully understand how the process works. ISB researchers have quantified this important class of proteins that play a key role in the formation of red blood cells.

Dr. Jeff Ranish Promoted to Professor

We are pleased to announce the promotion of Jeff Ranish to Professor. Jeff has been a pioneer in the fields of mass spectrometry and gene regulation. His impressive history of innovation in mass spectrometry technology has produced novel protein-crosslinking approaches to identify large scale protein-protein interactions in complex mixtures. He has applied the innovations to important biological problems, resulting in notable findings such as the characterization of multiple topological and…

Promotion: Dr. Jie Luo Becomes Senior Research Scientist

Congratulations to Dr. Jie Luo, of the Ranish Lab, who has been promoted to senior research scientist. From Dr. Jeff Ranish: Jie Luo is an extremely dedicated and talented scientist. When he joined ISB in 2006 as a postdoctoral fellow, he had no experience in mass spectrometry-based proteomics. Now he is a leader in the field of structural and functional proteomics. He has conceptualized and implemented several innovative proteomics strategies…

Researchers determine architecture of a macromolecular complex regulating gene expression and DNA repair

General transcription factor TFIIH plays central roles in gene transcription and DNA repair ISB researchers and collaborators map the architecture of the TFIIH complex using powerful crosslinking-mass spectrometry (CXMS) technology and integrative modeling Structural maps provide critical insights into how mutations in TFIIH subunits lead to disease phenotypes By Jie Luo and Mark Gillespie The expression, or transcription, of genes controls the identity and function of a cell. DNA damage…

Researchers Find Key Protein Tied to Production of ‘Good’ Cholesterol

3 Bullets: Inflammation causes cholesterol buildup and leads to cardiovascular disease, the leading cause of death in the world ISB, Seattle Biomed, and Oregon State University researchers collaborate to identify a compendium of proteins that control expression of a key regulator of cholesterol efflux Targeting cholesterol efflux to HDL is a potentially important therapeutic strategy for preventing and treating cardiovascular disease By Dr. Mark Gillespie Cells of the immune system,…

New Structural Map Helps To Understand Aggressive Tumors

3 Bullets: Aggressive tumor growth is linked to high activity of a macromolecular assembly called RNA polymerase I. ISB and FHCRC researchers collaborate to map the architecture of the assembly using a powerful crosslinking-mass spectrometry (CXMS) technology. Structural maps provide important insights into therapeutic targets for cancer treatment. By Mark Gillespie Rapidly growing tumor cells require large amounts of protein for their survival. This increased protein synthesis, or translation, can…

Results of the steady-state Markov model. The state transition and ‘self-renewal’ probabilities required to reach the steady state, shown as heat map

Cancer Treatment: A Systems Approach

By Sui Huang and Joseph Zhou, ISB Editorial Board Members Cancer cells, for decades regarded as a uniform mass of identical (“clonal”) cells, are not like the soldiers of a traditional army, trained to act and respond in unison. Cancer cells, even within a genetic clone, express enormous individuality akin to guerrilla fighters, each with unique strengths, weaknesses and distinct behaviors. Therefore, they do not respond to an attack from…

Dr. Jeff Ranish Receives Promotion

Congratulations to Dr. Jeff Ranish on his promotion to Associate Professor. Jeff has been with ISB since its founding in 2000. Read about the Ranish lab group.